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SECTION I

INTRODUCTION

1.1 Objectives

The principal objective of this project is to evaluate and

develop, jointly with RADC/ESE, the concept of using charge coupled

devices (CCD's) in the mode of a multiple-level digital processor to

perform basic operations of finite-field digital arithmetic as appli-

cable to linear digital signal processing and error correction

coding.

1.2 Background

Charge coupled device technology, fundamentally an analog signal
processing technology, finds wide and growing application to impor-

tant signal processing functions such as spectrum analysis, spread

spectrum matched filtering and analog storage and integration. It is
also an attractive technology for reliable monolithic large scale inte-

gration of binary digital logic functions because of its speed of opera-

tion, high packing density, low power consumption,and relative sim-

plicity of structures for implementing binary logic.

A charge coupled device, being inherently a sampled analog de-

vice, should be capable of operation as a multiple-level digital de-

vice if means are provided to detect and refresh the discrete levels

being used. Such a capability makes possible the use of CCD's to

accomplish the defined operations of addition and multiplication in

finite algebraic fields, especially prime number fields. The con-

cept was originally formulated under MITRE IR&D and Technology Base

programs in FY'76. That work was reported upon in conceptual appli-

cation to error correction coding at the 3rd International Conference

on the Technology and Application of Charge Coupled Devices [6,7].

9 iihDQDZBAac.o F j



Under this project, the previously formulated concepts are being

developed further and expanded in application to the general area of

finite field digital signal processing. The task efforts emphasize

analysis, test and measurement of the multi-level digital signal pro-

cessinq capabilities of state-of-the-art CCD's, leading to device con-

figuration and definition of LSI or VLSI chip architecture to imple-

ment defined operations in prime number fields and their extensions.

Activities consist of theoretical analysis, laboratory experimenta-

tion. test and measurement, demnonstration,and documentation. The

work will culminate in recommendations for new device development to

be undertaken by RADC/ESE.

1.3 Scope

During Fiscal 1979, efforts were applied in the areas of analysis

of multiple-level digital error rates, lab measurements of multi-level

operation, and the definition and developmen. of processing structurEs.

The accomplishments and status of work in these areas is described in

subsequent sections of this report.

This is an interim technical rcport, documenting activities and

results midway through the 30-month effort. The work reported re-

presents an average level of 0.5 MITRE technical staff per month,

The report is divided into two principal sections, Section II

describes efforts at analysis and measurements of the practical limita-

tions of multi-level digital CCD operation. Section III describes a

number of ideas and potential techniques for signal processing applica-

tions of multi-level CCD devices. Since this is an interim technical

report and the work is continuing, conclusions and recommendations are

reserved for the final technical report, to be published at the con-

clusion of the 30-month effort.
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SECTION II

MULTIPLE-LEVEL LCD OPERATION

A fundamental concern of this project is the ability of typical

CCD structures to operate on data consisting of sequences of discrete

digital signal charge levels representing signal values that assume

one of a finite number of integer levels. Each value may be repre-

sented, for example, by an integer multiple of Q0 elementary charges

where Q 0is the charge difference between readily distinguishable

levels in the charge transfer device. Typical operations involved

are charge injection, storage, transfer through shift register stages,

non-destructive sensing, charge summation, charge splitting, and

charge detection. These are the operations to be expected in CCD

circuit structures used in multiple-level digital filtering. The

ability of the LCD device or circuit to manipulate the charge levels,

without modifying them to incorrectly assign the wrong values upon

detection. is critically important to the success of the operation.

Analog signal processing is more tolerant of noise and distortion

introduced by the device. Binary digital signal processing involving

Boolean logic operations reduces the problem to one of distinguishing

between a pair of levels which can be widely separated to maximize

the signal distance relative to the noise. Our work is predicated

on the assumption that the noise and distortion introduced by the LCD

can be low enough so that the reduced signal distance resulting from

use of a larger, yet finite, number of levels can still be adequate

to perform useful signal processing functions. It is expected that

sucessful results of such processing methods may he realized as re-

duced circuit complexity, fewer interconnections, and greater relia-

bility, all obtained with the attendant advantages of simple fabri-

cation, low power consumption, and small feature size. Part of the

key to suc, ss is to develop innovative uses of the natural LCD opera-

tions such as cyclic shifting, transversal filtering, and charge

11



summation in order to implement the desired processing functions.

But first it is necessary to establish the basic ability of the

(imperfect) device to perform the essential operations without

excessive distortion, and to determine the limiits of this mode of

operation. We have attempted both analytical and experimental work

to answer these questions. The results of our efforts, at this

interim stage of the work, are described below.

2.1 An jyis of CCD Multiple Level Error Rates

A theoretical analysis was attempted to determine the average

probability of error in estimating the discrete value of a multiple

level digital signal observed at the .utput of a CCD shift register

structure. The analytical model included the effects of shift

register length (number of stages), charge transfer inefficiency, and

intrinsic noise sources. Buried channel device parameters were to be

considered. Initially, the analysis was to ue based on a Gaussian

model of the noise distribution, as implied by use of the central

limit theorem. It is realized, however, that for small error proba-

bilities, it is the tail of the distribution that is important and

the Gaussian noise model may be inaccurate. Consequently, improved

physical and mathematical models of the noise processes are in need

of continual examination.

The analysis of error rates should consider not only sampled

linear delay lines but also transversal and recursive filter structures.

Digital filter structures are commonly described and analyzed by

input/output methods. The basic operations performed by a linear

filter are often conveniently described in the Z-transform domain in

which the filter output is determined as the product of the Z-transform

of the input sequence with the system function of the filter, most

often given as a rational polynomial in the 7-transform variable. For

example, a simple delay line of N stages, each stage suffering a fixed

12



fraction ii loss , has a system function given as

which for E<<1 can be approximated as

H (N) (Z) ;z Z exp (Nc(Z 1 - 1) )(2)

Such an approach has proven useful in assessing first-order effects

of dispersion and frequency response limitations of delay lines (and

filters) operating on sampled analog signals. One could next take

into account the effect of additive noise (referred to the output or

observed as an equivalent output noise) and construct a crude first

order model to assess device performance. We have in fact, done this

previously in the formulation of a simple Gaussian model, the results

suggesting the feasibility of the multi-level logic role for CCD's [1].

In extending the results of such first-order modeling and

analysis to transversal and recursive filter structures, the presence

of internal feedback loops in the CGD device encumbers the analysis to

the extent that the system functions become extraordinarily complicated.

Although signal-flow-graph techniques can be readily applied to con-

struct a system function, the computational work involved in reducing

it to a practical and usable form does not seem worth the effort,

especially in view of a basic theoretical inadequacy of the first-

order physical model to accurately describe performance.

A basic problem with tho first-order physical model of the sort

described is that the random processes that contribute to the charge

transfer inefficiency, the recombination charge (dark current) added

to each cell, and the uncertainty in sensing the transferred charge

at the delay taps are not properly taken into account. In fact in the

first order model, the charge transfer loss is not even regarded as a

random process variable; only the average value is used as a fixed and

13



invariant quantity. While the first order model has proven sufficient

for describing CCD operation with analog signals, it is doubtful that

it can provide an adequate model for accurately predicting digital

error rates, especially for the multiple-valued decision with which

we are concerned.

Our approach to this problem has been to formulate a dynamical

state-variable model of the CCD, viewing it as a linear sequential

circuit that can be described by the system equations

x(k + 1) = A(k) x(k) + B(k) F(k) (3)

y(k) = C'(k) x(k). (4)

In this formulation the vector x(k) represents the state of the model

at the kth clock cycle. The matrix A(k) describes the unforced

operation of the circuit subject only to the initial state. The form

of A(k) depends on the circuit structure being analyzed (whether a

delay line, transversal filter, or recursive filter) and contains the

charge transfer loss parameters and also terms involving these para-

meters in intrinsic feedback loops. In its most general form for our

applications A(k) is given as

SN(k) l-N- (k) 0 0 . . . . 0

0 EN-l(k) 1-EN 2 (k) 0 . ... 0

A(k)= (5)

0 0 0 . . . 2(k) 1-El(k)

(1l[1N(k)] 2 [I-FN.(k)] F 1 (k) + 42[(-ci(k)]

for a structure having N charge transfer cells. n (k) is the fraction

of untransferred charge remaining in the n th cell after the kth cycle

and [(-cn (k)] is the fraction of charge transferred. cn(k) is a

random variable resulting primarily from the probabilistic interface-

state and bulk charge-trapping phenomena. In the analysis we assume

14



that this parameter is statistically independent from one cell to

another and from one clock cycle to another and that all ensemble-

average moments are stationary on k (and from cell to cell). The

coefficients a Ct2 -- "N are scale factors (or tap weights)

weighting the output of each cell in a recursive (LFSR) structure.

For a simple delay line, these coefficients would all be set equal

to zero. The matrix B(k) describes the dependence of the state of

the circuit on the external driving sources F(k) that in this model

include both the input drive and additive noise sources. The

observation matrix C'(k) is chosen to express the observed output
vector y(k) as a function of the circuit state. The linear sequential

circuit represented by these equations is sketched in Figure 1.* (The

model does not include an output noise source, which can be included

in the usual manner).

Our use of a state-space model rather than an input-output

description is a departure from what is usually encountered in digital

signal processing applications, but it seems necessary because of thc

intrinsic feedback mechanisms and the further complication of the

random processes, which combine to make the model a non-stationary

one. As a consequence, the use of the model can be quite complicated.

In order to determine the response of the dynamical system described

by equations (3) and (4) we must provide an input signal that is typical
and then determine the corresponding output by solution of the

equations. Since the output sequence (as a function of the index k)

will be represented by a sequence of random variables, it is appro-

priate to calculate at least their first and second order moments in

order to calculate error rates. The sufficiency of these moments is

based on the assumption that we can treat the output values as

Gaussian random variables, for which the mean, variance, and

F(k) =f(k) + v(k) + 1k

15
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covariances completely describe the process.

2.1.1 Solution of the System Equations

A solution to the linear difference equation (3) is given by

the variation of constants formula,
k-1

x(k) = (k,k0 ) x (k0 ) + 1 P(k,i+l) B(k) F(k) (6)
I=k

0
where x(k ) is the initial state, and the transition matrix

(k, k ) satisfies the homogeneous matrix equation

(k+,k 0 ) = A(k) D(k, ko); 0 (k ,k0 ) = (7)

and the composition law

D(k,k) D(k ,ko) ((k,k 0); k 0 < k < k (8)

Direct substitution will verify that equation (7) is solved by the

transition matrix

,(k,k 0 ) = A(k - 1) A(k - 2) . . . A(ko) (9)

From equation (4), we can express the output as
k-i

y(k) = C'(k) D (k, k0 )x(ko) + C'(k) I i(k,i+1) B(k)F(k) (10)

X0

with the transition matrix given by equation (9).

Once the output function has been calculated, probabilistic methods

can be applied to determine the average probability of incorrectly

estimating the output digital level. For example, if we take Qo

(coulombs) as the maximum (full-well) charge and subdivide it into

q equal portions to represent a q-level signal, we can calculate the

probability of correct detection (PCD) by integrating the distribution

of the output from Rq-q/2 to Rq + q/2 for a value that is supposed to

represent the Rth level. The probability of incorrect detection is one

minus PCD. If we assume a Geussian distribution at the output, it is

17



sufficient to calculate the mean value and variance of y(k) in

order to complete the integration (taking account also of additive

Gaussian noise at the output). We expect that these parameters of the

output distribution will change with the clock cycle k as a result of

dispersion and recombination noise increasing with time.

For a solution it is necessary to calculate the ensemble average

mean value and variance of equation (10). The work is made tractable

by the assumption of statistical independence of the random variables

from cell to cell and from cycle to cycle. In particular, we have

assumed that

cm(k) n(k) = nk) ; m~n (11)

and

£m(k) Cm(j) = 'm ; k~j (12)

where the overbar indicates an ensemble average.

We assume wide-sense stationarity from cell to cell, so that

( and 2

Cm(k) E , (13)

taking Fm(k) as a random variable of a wide-sense stationary random

process. These assumptions allow us to express the ensemble average

outputs as
y _T_ (14)

kT= C'(kT x(k)

where

T-: =A k )A(k-2 2 . . A 7x(ko )

k k fA 7j B _F k 
(15)

i=k j=i+l

18



and where we have assumed statistical independence between the

random processes describing the charge transfer inefficiency and

the additive noises contributed by the recombination charge and

the tap-weight sensing uncertainty. We assume that the latter pro-

cesses are also wide-sense stationary so that we can express the

mean value of the output as

k-i

ZFy k-k0  xk ~) + Ck k-(i+1 )B F k) (16)

where we have made use of the fact that B(k) is a deterministic and

constant matrix in our model, and that the average values of C'(k)

and AMk are constant matrices. Observe that equation (16) could

also have been determined by first taking the ensemble averages of

equations (3) and (4), making the (ensemble average) state matrix

A(k) a constant matrix, and then applying the variation of constants

formula. Alternatively the solution could be built up by iteration

on k. Regardless of the method used, the computation is formidable

for practical values of N, suggesting a numerical calculation in

place of an analytical approach. Even a direct numerical calculation

will be extraordinarily complicated for values of N that are not

trivially small, as each iteration requires multiplication by

N x N matrices.

Calculation of the output variance may be performed either

by the use of the variation of constants solution of equation (10)

in the appropriate statistical formulas in an attempt to develop

a closed-form solution, or by developing a difference equation

formulation aimed at an iterative numerical calculation. The

first approach leads to a complicated closed-form expression that is not

19



particularly useful. The result of the second approach is a

matrix difference equation for the variance,

220 (k + 1) = A(k)E 2 (k)A'(k) + [A(k) - A--] -xk) x'Tk) [A'(k)-A_k)l (17)

+ B 2 (k) B'

ay2(k) =  C'(k)_ 2 (k)C(k) (18)

where we have expressed

x(k)x'(k) - -x( xTk= 2 (k) (19)

A numerical solution for the variance can be developed from

equations (16), (17), and (18) by iteration on k. Numerical cal-

culation of the variance, for practical values of N, will be even

more complicated than calculation of the mean value. Terms of the

kind A(k)o 2x A'(k) require a pair of N x N matrix multiplications

followed by statistical ensemble averaging of the scalar elements

of the product matrix. Clearly, machine-aided computation is

necessary. Two approaches suggest themselves:

1) Calculation, for small length N and sample

value k, on a main frame computer using a suitable

programming language (like APL) to perform the

matrix operations,

20



2) Use of the state equation directly to

simulate the device as a dynamical system on

a digital computer, using Monte Carlo

techniques for random parameter selection

and statistical averaging.

Both approaches for numerical analysis will be practically

limited by the available facilities and the computational effort

required. They have little advantage over direct measurement of

an actual device other than the ability to vary the parameters

of the model.

To summarize the status of our analysis, we have concluded that

the non-stationarity of the physical model makes inapplicable simple

computational techniques, like the Z-transform method, for determina-

tion of multiple-level error rates. The techniques of numerical

analysis based on a dynamical state-variable model described above

seem limited to relatively short structures that can be handled

by brute-force machine computation. Since the outcome and ultimate

usefulness of such an analysis remain in doubt, we have de-emphasized

analysis in favor of experimental measurements. Furthermore, first

order models, calculations and previous limited experiments suggest

low error rates for a small number, say 3 or 5, of digital levels.

Moreover, in considering structures for finite-field operations

we conjecture that some very useful operations can be performed in

circuits that utilize only a few levels. Some examples will be

discussed in Section III.

2.2 Laboratory Measurement of CCD
Multiple Level Error Rates

The objective of the laboratory tests and measurements to be

described is to assess the ability of charge-coupled devices (.CCD',s)

21



to accommodate multiple digital charge levels at low error rates

in detecting the valid level. The basic parameter of GCD per-

formance that must be determined is the number of discrete ampli-

tude levels that can be processed and correctly detected for a

given device. The percentage of correct detections is the

criteria that will be used to compare the performance of different

devices. 1. is also easily related to the error rate which is

1-PCD.

The PCD can be expressed as a function of three basic

operating parameters. These three parameters are: the number

of discrete levels that exist within the useable dynamic range of

the device, M; the clock frequency of the GGD, f and the ratio

of the input data rate, R D to the sampling rate, R s, of the CCD.

These operating parameters indirectly affect the PGD which is

determined ultimately by the charge transfer inefficiency, dynamic

range and intrinsic noise of a given device. Our experimental

test facility was designed to enable the PCD to be determined as

a function of N, f c and R D/R S.

Different methods of performing laboratory tests and measure-

ments to assess the ability of CCD's to accommodate multiple digital

charge levels at low error rate were examined. As a first

step in the laboratory program, some effort was expended on careful

set-up and operation of a Fairchild CCD-321 dual 455-stage CGD

shift register. This is a buried channel CCD that at the time of

work represented the best commercially available device of this

type. After the operation of the device became thoroughly under-

stood and spurious noise effects were suppressed, an experiment was

organized to specifically measure the PCD, or equivalently the

error rate, as described below.

22



2.2.1 Test Circuitry Description

The test circuitry created to determine the PCD for a given

device is modular in form and is capable of adaptation to measure-

ment of most any CCD delay line. A schematic representation of

this facility is shown in Figure 2.

The test circuitry consists of a multi-level digital code

generator, error detection circuitry, and various control clocks.

The multi-level digital signal is derived by digital to analog

conversion of the output of a pseudo-random noise (PN) sequence

generator. The output word length of this code generator can be

varied to change the number of discrete levels present. The PN
generator is programmable and controlled by switch selection.
The various control clocks allow simultaneous changes in the CCD

sampling rate and the data rate. The error detection circuitry is

capable of producing both PCD statistics and differential error

signals.

The PCD is obtained by comparing the multi-level sequence

generated with the sequence present at the output of the CCD delay

line. The comparison is made by a window comparator circuit whose

interval is determined by the resolution desired. When the

output signal is detected correctly, a pulse is generated by the

comparator which enables the error counter to accumulate events to

determine the PCD.

The error detection circuitry is also capable of comparing

two delay lines simultaneously. An Exclusive-OR gate combining

the outputs of the two window comparators produces an error signal

which determines the number of times the two devices disagree and

whether a correct detection was made. A differential amplifier is

also used to produce an analog error signal.
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2.2.2 Test Results

At the time of writing, the test facility is in the final

stages of construction and shakedown. The error detection circuitry,

which includes the window comparator, digital delay line, and PCD

counter, is 90% complete. The multi-level PN code generator is

completely functional and is being used along with a storage oscillo-

scope to obtain some preliminary data while the test facility is

being completed.

Two CCD's commercially available (froro Fairchild and Reticon)

have been obtained for testing purposes. These analog delay lines

appear to represent the best commercially available devices of this

type but are not as suitable as other devices under development

(RCA's RSAM for example). The CCD presently uncer test is the

CCD-321A video delay line produced by Fairchild. This device

contains two buried channel 455-stage analog shift registers.

However, it requires the inconvenience of four-phase clocking.

Several multi-level digital sequences with M = 8 discrete

levels were sampled by the delay line at a sample rate Rs = 2.5 MHz.

The data rate RD of the generated sequence was then varied to

produce different ratios of oversampling. Photographs for Rs/RD

ratios of 32,16, and 8 can be found in Figures 3, 4, and 5

respectively. The change in the data rate (versus a constant

sampling rate) is shown by the change in the horizontal time axis

of each photograph.

It can be seen from these photographs that the changes in

data rates within the range examined seem to have little effect on

the transmission of data through the CCD delay line. However,

one can see that the presence of clock feedthrough on the output

signal will probably cause errors to occur in the detection process.
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The effects of the ambiguities created by the clock feedthrough

can be clearly seen in Figures 6, 7, and 8. This noise source

causes two sequential levels to overlap as can be seen in Figure
6. This ambiguity is present for M =32 and Rs/RD values

of 32, 16, and 8. Several techniques are being explored to
eliminate this source of noise. The two most promising methods
are additive cancelling of the clock and lowpass filtering. Both
techniques will be used.

2.2.3 Continuing Test Plans

The testing of the Fairchild, Reticon,and other available

CCD's is ongoing. At this time, we are concentrating our resources
toward the completion of the test facility. While the test

facility is being completed, we are probing the optimum operation

of the devices being tested. The parameters of charge transfer

efficiency, dynamic range, and frequency response are being

determined for each device. These preliminary device evaluations

should help us to better understand the operation of each as a

multi-level digital delay line. The procedures developed will

help determine the optimum range of the input and clock biasing

for proper multi-level operation.

After completion of the test circuitry, statistical data will

be gathered on the performance of each device when used to process

multi-level digital signals. The probability of correct detection

statistics will be examined and plotted as a function of M, f c9

and Rs/RD. We will determine what effects charge transfer effi

ciency, dynamic range, and the number of device stages have on the

PCD for a given device with the results analyzed and applied to

more complicated processing structures.
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SECTION III

MULTIPLE-LEVEL CCD DIGITAL SIGNAL PROCESSING FUNCTIONS
AND OPERATIONAL STRUCTURES

Given that multi-level error rates for state-of-the-art CCD's

are sufficiently low, we must still devise efficient monolithic

structures to per'form the needed operations. Work elsewhere is

concerned wiLh the use of CCD's for multiple-valued logic operations

based on extended Boolean logic. Our work is based on operations in
finite algebraic fields or rings for which circuitry needs to be

developed to carry out the basic algebraic operations of addition,

miultiplication, and inversion. We previously observed that prime-

field multiplication can be performed by cyclic pErmutation of the

multiplicative ciroup of the field and that, similarly, addition can

be carried out by cyclic permutation of the additive group [1]. But

most signal processing functions carried out in finite fields will

require extension-field operations to be performed, equivalent to

operating with polynomials defined over the prime field. Although

two-dimensional array multipliers organized in binary trees have

previously been advocated for standard elements to carry out the

operation, our view of the approach is that it tends to expand the

hardware complexity [2]. This approach has the attendant risk of

decreased circuit reliability and increased cost, compensated by the

ease of field-programmability and the potenti3l for incorporating

some degree of fault-tolerance through structural redundancy. But:

basically the finite-field array multiplier approach seems not well

suited to typical CCD operations, although the option should be kept

open for further exploration.

Below we discuss some of our ideas for carrying out Galois field

operations with reference to the typical signal processing operations

of discrete transformation and cyclic convolution. Our object is to
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devise structures in which the natural CCD functional operations can

be used to advantage; consequently there is some emphasis on shift-

register-like structures. Our ideas at this stage are tentative and

exploratory, and certainly in need of further development (or selec-

tive abandonment). They are also intended to suggest some useful

test structures for exploratory device development and fabrication.

3.1 Galois Field Multiplication by Feedback Shift Registers

Earlier work showed that computations in the base field GF(p)

could be performed by cyclic permutation of the elements of the

additive or multiplicative groups of the field and simple circuitry

using the Fairchild CCD-311 was configured to demonstrate the prin-

ciple for p = 5 [1]. It was largely this result that prompted us to

investigate further the capacity of a CCD to unambiguously store and

manipulate charge samples that represent distinct elements of GF(p).

Similar techniques can be used for the extension-field operations.

It is well known that multiplicative operations in GF(2m), such

as scaling by a fixed element ak of GF(2m), raising to powers
k kr kr kZ( )r , and multiplying two variables a a , can be performed

by linear sequential circuits in which the arithmetic operations are

carried out in the prime field GF(2). Unaer this project we have

examined the generalization to p 2 with the result that similar

circuits can be devised in GF(pm) where p f 2 is a prime number.
For example, it is possible to multiply an element ak of GF(pm) by

a fixed element (ciY) by shifting the data sample ,k (once) in an

m-stage linear sequential circuit whose feedback and feedforward

connections are determined by the scale factor a. The connection

matrix for the circuit can be determined easily from the field-

generating recursion, which the matrix must also satisfy, with the

result that it can be written down by inspection. As an example, we

have drawn in Figure 9 a set of shift registers that can be used for

multiplying by the elements of GF(5 4); only a few are actually shown
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for purposes of illustration. Each of these circuits forms the

required product as the contents of the register in a single data

shift. The operations of addition and multiplication are carried

out in the prime base field (modulo 5). In addition to defining sums

in GF(5), it is also necessary in the structures shown to implement

scalar multiplication by the elements of GF(5).

If we work with an extension field of the form GF(3 M),

then the operations of addition and multiplication of the

base field elements are further simplified since the elements of

GF(3) can be represented as 0, 1, -1. Consequently, non-zero

multiplication is achieved either by sign inversion or non-inversion

of the signal. A set of multipliers that implement scalar multi-

plication by the elements a kof GF(3 4) is shown in Figure 10 using

this representation for the elements of the base field.

Since there are pm - 1 non-zero elements in GF(pm) -- 80 elements
for GF(3 4) -- one might expect to require the same number of registers

to multiply data by all the field elements in parallel in a single

clock cycle. Actually only in-1 linearly independent registers would

be necessary to generate all of the products providing their outputs

are appropriately combined. Notice for example that:

F (,7 =F 1 + F 2 and F 68 = F 2 + F 3 (20)
a --a

67
so that the results of multiplying by acan be obtained by multiplying

1 2
separately by a and a and adding the products. Also, the existence

of unique multiplicative inverses can be used to reduce the number of

separate registers; for example a 2= a 42or equivalently -F 2 =F 4

so that multiplication by a can be accomplished by first multiplying

by a and then complementing the output. In this way each pair of

registers can be used to generate at least 5 products on one clock

cycle.
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3.2 Galois Field Addition

Addition in GF(p m ) may be considered as the addition of poly-

nomials of degree m-1 having coefficients in the prime field GF(p).

The addition is carried out by adding (modulo p) the coefficients of

the variables of the same degree. Unlike the addition of binary

n-tuples corresponding to radix 2 numerical representation, there is

no carry operation. The operation is the same as cartesian addition

of m-dimensional vectors.

3.2.1 Addition Modulo

One of the most important functions that needs to be developed

is addition modulo p. As discussed previously,we can treat addition

in GF(p"11) as m-vector addition over GF(p) in which the vector com-

ponents are added modulo p. Multiplication in GF(pm) can be imple-

mented either by exploiting the cyclic property of the multiplicative

group(as shown in 3.1 above) or by performing serial multiplication

in wnich partial products (modulo p) are formed and then added (or

accumulated) byvectoraddition modulo p as in the case of an array

multiplier. No matter how we partition the computation over GF(pm),

it is inescapable that GF(p) adders will be required. Such an adder

can be developed by extending the notion of CCD digital logic

techniques employed by TRW for performing binary logic operations[3].

One such scheme for a GF(p) adder is described below.

The operation of addition modulo p for a pair of elements a, b,

of GF(p) is defined by the simple rule:

a + b; a + b < p

(a + b)mod p (21)

(a + b) - p; a + b ' p
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where the operations on the right hand side of equation (20) are the

operations normally defined in the infinite field of all the integers.

A CCD structure that executes this operation is shown in Figure 11; it

represents a slight variation of the cellular structure used by TRW

for a binary Exclusive-OR gate [3]. The operation of the suggested

adder can be described by the following sequence of events, involving

charges that exceed the bias (zero) level.

1. On the first clock pulse, charge packets stored under

electrodes A and B are transferred and combined under

electrode [P. The charge exceeding the controlled value p

flows over the barrier and accumulates under electrode C.

2. On the next pulse, the charge packets residing either under

gate C or gate D are transferred to the region under elec-

trode E, depending on the states of the transfer electrodes

T and ir. The T electrode is controlled by the element sensing

the charge under electrode C the presence of charge under C

inhibiting the transfer from D. The charge under C is trans-

ferred to E in either case, being either zero or data.

3. On the subsequent pulse the charge on electrode E is sensed

and the electrodes C and D are preset to the zero level by

transferring their remaining charge to a diode charge sink.

The charge packets representing the next set of values to

be added are transferred to electrodes A and B and the cycle

is ready to repeat.

If a +- b _, p then (a + b) mdpis transferred to electrode C during

the first third of the cycle and is transferred to electrode E in the

second step. The charge remaining under D must equal the modulus value

p, but is prevented from further transfer due to the charge present

under C. If a + b -- p then no charge is transferred to electrode C

(by overflowing the barrier) and the value (a + b) mod p resides under

D after the first step, and is transferred from D to E on the second

step, the transfer gate T now permitting the transfer since no charge

is sensed under C. On the third part of the cycle, the residue
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(a + b)mo d p is sensed on electrode F and the other gates are
re-initialized.

The technique described can be modified to configure a 4-input

adder. The operation of such a structure, shown in Figure 12, can

be described by the following sequence of operations:

1. Charge packets stored under electrodes A I and B are

transferred to electrode CI; charge in excess of the

;;iodulus value p is allowed to flow over the controlled

barrier and accumulate under E. Simultaneously, the

charge packets under A2 and B2 are transferred to C2

with the charge in excess of p allowed to flow over the

barrier and accumulate under E. Any charge accumulated

under E that exceeds the modulus value p is allowed to

cross the barrier and accumulate under F.

2. After completion of step (1) any charqe packets residing

under C are transferred to C2 by enabling the appropriate

transfer gate. Again. charge in excess of the modulus value

flows over the barrier to E, and any charge in E that

exceeds p flows over the subsequent brrier and settles

under electrode F.

3. In the next step, the charge under E is sensed to either

permit or inhibit the transfer of charge from C2 to E, the

presence of non-zero signal charcje in E inhibiting

the transfer.

4. In the final step, the charge under F is sensed to either

permit or inhibit the transfer of charge from E to F by

control of the transfer gate. Non-zero signal charge in F

prohibits the transfer. The charge under F at the com-

pletion of this step is sensed to determine the value

(A1 + BI + A 2 + B2 ) modulo p.
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In order to verify the correct operation of the scheme just

described, it is convenient to display the various levels of charge

stored under the electrodes after the second step. These are de-

pendent on the values of the summed charge packets as shown in

Table 1. The last condition motivates step 3 above; afterwards the

sun is stored either under electrode E or F and is sensed at the

completion of step 4.

The scheme outlined can be developed into an 8-input adder by

providing an additional charge accumulating cell and controlled

barrier. Such an adder is shown schematically in Figure 13.

The adders described schematically are presented as exploratory

ideas. The actual details of clocking, formation of potential

barriers, and sensing techniques need to be examined more closely in

order to assess the feasibility of the scheme.

3.3 Fast Transform Structures

The work being carried out under this project was motivated

originally by the prospect of devising simple structures, based on

multi-level GGD operation, for decoding Reed-Solomon error-correcting

codes. It was previously established that such codes could actually

be designed over GF(p) where p is a prime number greater than 2. The

advantage seen was that the arithmetic operations would be performed

in the base field GF(p) rather than in some extension field GF(pm)

with the result that the hardware could be simplified if CCD multi-

level digital processing could be used. In order to make the codes

useful it would be necessary for p to be reasonably large, say p = 17

or p =31, thus prompting the examination of CGII operation with such

numbers of discrete amplitude (charge) levels.

Lately, we have come to believe that it may be more useful to

work in an extension field where both the characteristic p and

the degree of extension m are small. For example, we might choose
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TABLE I

INTERMEDIATE STORED CHARGE LEVELS

CONDITION C C2E F

A~~~~+ 1A +Bp 2+ --
and C p p [A1 +B1 +A2 B21 pA1+Bl>-pa A2+B2>

- p [Ap [AI+I+A2+B2]
[A1+B 1 ]p+[A 2+B2]pvP

A I+B 1>-p. A 2 +B 2 Pand AC p 1 [AI+BI+A 2+B2]p C

[A1+B1 ]p+JA 2+B2 ]p<P

A 1+8 P - A 2 B24

1 -and A2 +  
p AB+BI+AA2+B2]p

[A I +B1p+[A
2+B21pp

A1 +Bla-p, A2 +B2 < Pand E p p [1+BI+2+B2]pfA I+B I) p +A 2+B 2]p < P
AI1+B I'A +B 2>_P

aAd E p [A1+B1+A2+B2] p£[A1 B1 ]p+[A 2+B2 p_ P

P 
[A+BI+A2+B]

fA I+B 1p +[A 2+B 2]p<P 1

AI1+B 2'piA 2+B2 <p
and E; P [AI1+BI1+A 2+B 21p

[A I+B1 1p +[A 2+B 2]p_P

Al1+BlepndA 2+B 2 p  APB

[AI1+B1 1p +[A 2+B2]p <P A 2+B2] p

Ai + Bi - [Ai + Bi] p modulo p
= bias charge only
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p =3 and m = 4 to design a Reed-Solomon code having a block length

of pill - 1 =80 symbols of 3 levels each. Our change in direction is

prompted by several factors. First of all it is becoming apparent

that the extension field operations are not overly complicated when

the field characteristic is small, as was discussed above for the

multiplier structures. Secondly, the requirements for multi-level

CCD operation are reduced to levels for which high reliability is

evident. Finally, the use of such extension fields admits the use of

fast transform techniques that can be effectively employed in a

Reed-Solomon decoding algorithm, and probably in other digital signal

processing applications as well.

A discrete transform can be defined over GF(pm) that is analogous

to the discrete Fourier transform (DFT) defined over the field of com-

plex numbers [4]. This transform is interesting in its own right for

conceptual reasons and also because it exhibits the cyclic convolu-

tion property which can be useful to evaluate the convolution of two

sequences by transform techniques in which the product of the trans-

foms produces the transform of their convolution. The other well-

known Fourier transform properties are also useful computationally.

In addition, the discrete Fourier transform is strongly linked

with the realization of digital filters that implement a rational

transfer function [5]. More recently, techniques of finite algebra

have been applied to the design of digital filters in a manner that

overcomes some of the limitations (approximation error, roundoff

error, instability) of digital filter design [6]. One rather general

approach to finite-field digital filter synthesis realizes the filter

(in each field representation) as the weighted sum of the coefficients

of the moving window discrete transform of the input, as shown

schematically in Figure 14.
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Sensing the importance of the discrete transform function, we

have expended some effort on this project to examine structures that

implement the transform in the class of Galois fields GF(p m ) where

p > 2 is a prime number. We have found that a systematic fast compu-

tational algorithm can be devised that, unlike the Winograd algorithm,

applies systematically to all such fields. This led us further to

examine the processing structures implied and the implications of the

required arithmetic operations with regard to the use of multi-level

CCD techniques. Some results of this work are described below, with

the inclusion of a specific example for clarity.

3.3.1 Transform Definition

Let a0, al, . . . a n-i be distinct elements of a finite algebraic

field GF(pm) of order pm-I having an element b of order n. The linear

transformation

n-i

A a i b
lj  (22)

i:O

is a mapping of GF(p n) into itself. It is assumed that n divides

p M-1, the order of the field, and for our purposes will be equal to it.

In that case the field element b is a primitive nth root of unity.
It can be shown for any integer r,

n-i n, r = 0 mod n (23)

b ir= 0, otherwise
i=O

and the property can be used to verify by direct calculation that

the mapping that is inverse to that of equation (22) is the linear

transformation

n-l

ai = n
- 1 -- Aj b-ji (24)

j=0
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wheren-n = pm - 1. Equations (22) and (24) define a discrete

transform pair over GF(pm) and the operations of addition and multipli-

cation are defined in the same field. Addition may be performed as

modulo-p addition of the m-tuples that are the field elements com-

prising the sum. Multiplication may be defined by addition of indices

of the field elements

br bs =br+s (25)

The transform pair of equations (22) and (24) are analogous to the
th

discrete Fourier transform pair for which b would be a complex n

root of unity and the arithmetic would be defined in the complex

number field: in particular, the cyclic convolution property holds.

Fast computation algorithms, analogous to the FFT algorithms, can

also be applied.

If the sequence to be transformed is expressed as a polynomial

over GF(pm)

a(x) = a + a 1 x + a 2 x + + a n-x (26)

then the transform of the sequence a0, al, a2, .-. . a n-i is seen to

be identical with polynomial evaluation of a(x) at the n distinct

points b0 , b1 , b2 , . . bn-i and the inverse transform is identical

with interpolation of the polynomial a(x) from its n values.

a(bj ) = a0  + b
j  (a1  + . . . + bj  (an-2  + ban-l)...) (27)

or equivalently it can be interpreted as the remainder of the poly

nomial division a(x)/(x - bi) evaluated at the point bi. The second

interpretation may be represented as the set of polynomial congruences,

a(x) a(bjlmod (x - bJ); j = 0,..., n-i. (28)
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The conqruences of equation (28)can be calculated in principle

by dividinq the polynomial a(x) separately by the first degree

polynomials (x - bJ), keeping only the remainders. That is opera-

tionally equivalent to evaluating a(x) at the n non-zero field points

b. In either case n2 multiplications in GF(pm) are implied.

A class of fast computational algorithms--fast because they

reduce the number of multiplications in GF(pm)--can be devised by

consideration of the different ways of factoring the polynomial x n-1

over GF(pm). One way is to factor as
n-l

xnI= T- (x-bj) (29)i=O

the first degree factors (x-bj ) being the modulus polynomials of

equation (28). This factorization leads to the direct computation of

transform values, requiring n2 multiplications in GF(pm). A block

diagram of a circuit to perform the calculation is shown in Figure 15.

Another factorization, one that reduces the number of multiplica-

tions in GF(pm), results from a successive decomposition of xn-I into

factors of the form (x2 k - b 2). Observe that for p > 2 and n = p M-1

we can always establish that bN/ 2 = -b0 ; therefore

(x k-b 9 ) (xk-bN/2 + k) = (xk-bp') (xk+bz) = (x2k -b 2). (30)

The polynomial x nI can be progressively factored in this manner, the

factorization being represented conveniently as a binary tree, as shown
in Figure 16 for x801 factored over GF(34). It is easy to show that

the evaluation at one of the roots bj only requires processing along

one of the distinct tree paths. This tends to reduce the number of
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(k )

X(N-1)

Figure 15. FIRST DEGREE POLYNOMIAL DIVIDER STRUCTbRE FOR AN
N-POINT DISCRETE TRANSFORM:

N-i
X(9) = E x(k)a"k

k=O
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multiplications in GF(pm) from n2 to something on the order of n log 2 n.

Notice that we can write the division algorithms

a(x) P1  (x) Q1  (x) + r1  (x) (31a)

r1 (x) = P2 (x) Q2 (x) + r2 (x) (31b)

and after substitution

a(x) = P1  (x) Q1  (x) + P2  (x) Q2  (x) + r2  (x). (32)

If P2 (x) divides PI (x), we can write equation (32) as

a(x) = P (x) P2(x) x) + Q2(x) + r2 (x) (33)

which demonstrates that the remainder r2 (x) can be calculated progessively

by dividing a(x) by P1(x) and then dividing the first remainder

r1(x) by P2 (x). The sequence can be continued indefinitely as we pro-

gress along a path in the tree. This type of decomposition is analogous

to the decimation-in-frequency FFT algorithm.

The processing structure that accomplishes an 80-point transform

over GF(3 4) by use of this method is shown in Figure 17. There are

480 multiplications in GF(34 ) required; of these approximately one-

sixth are simple multiplications by + b°.

A further reduction in the number of multiplications in GF(p
m

required to calculate an n-point transform is possible by considera-

tion of a different factorization of xn-1. If we factor this poly-

nomial into the product of the minimal polynomials of the field

elements, then we can devise a two-step algorithm in which the first

step is division by the set of minimal polynomial factors and the

second step is division of the remainder polynomials by the first

degree polynomials (x-bj ) that are factors of the minimal polynomials.
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Explicitly, we can factor
M

x n_1 =I T mi (x) (34)

i=O

where

mix) (x - b i pj  (35)

j=l

are the minimal polynomials. These are monic, irreducible over

GF(p), and have all coefficients in GF(p). Division by these poly-

nomials in the first step of the algorithm replaces multiplications

in GF(pm) by multiplications in GF(p) which are generally much simpler

to perform. The second step of the algorithm requires multiplications

in GF(pm) to evaluate the remainder polynomials at the points of

the field, but the number of these multiplications is greatly re-

duced because there are a relatively small number of remainder poly-

nomials, each of degree less than the degree of field extension. The

number of multiplications in this final step could be further reduced,

at the expense of more additions, by using the field recursion that

expresses all the field elements as linear combinations of a subset

of size m.

To illustrate this second algorithm, and compare it with the

decimation-in-frequency type, we have worked out an example for an

80-point transform over GF(3 4). In Table II, we list the elements of
GF(34) representing them as 4-tuples over the setI-1 O, I u

to represent GF(3). In Table III, we list the minimal polynomials

of GF(3 4) and their respective roots in GF(34 ). In Figure 18 we

show schematically a processing structure for calculating the transform.

The circuits that divide the input data by the minimal polynomials

are linear feedback shift registers over GF(3). In this example, the

number of multiplications in GF(3 4) is 216, while 6800 multiplications

in the base field are performed by 85 multipliers.
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Table II

THE ELEMENTS OF GF(3
4

GENERATED BY 4 + 3 + c(2 -2 -

ELEMENT REPRESENTATION ELEMENT REPRESENTATION

10 0 0 0 1 'o 0 0 0-1
1A 1 00 1 0 00-1 0

12 0100 ( 2 0-1 00
1L 1000 L,3 -1000

-1-1 i 1 1 E44 1 1-1-1
0-1 0-1 L4 0 1 0 1

16 -1 0-1 0 4.LLr, 1 0 1 0

7 1 0-1-1 147 -1 0 1 1
CL -1401 9 1-1 0-I
C -1 1 0-1 1-1 0 1

10 -I-1 I-i CL 0 1-1-1 1

CL 0- I-I 52 0 1- 1
-1-1 0 1 -1 1 0

L'4 -1 0-1-1 1 0 1 1
1 0 1 -1 CLs -1 0-1 1
1 0 0 1 (156 1 0 0-1

11 1 10-1 .'
7  -1-1 0 1

0-1 01 1 010-1
S-1 0 1 0 9 0-1 01 1 I -I -1 60 1 1 1 1

1 1 0 1 rb -1-1 0-1
0-1-1 1 I0 11-1

-1-1 1 0 3  1 -1 0
Ct 0-1-1-1 b4 0 111
C2L -1-1-1 0 65 1 1 1 0
C2 6 0 0-1-1 CL 0 0 1 1
(x;,7 0-1-1 0 b7 0 1 1 0
C 2 F -1-1 0 0 C6R 1 1 0 0
IX29 0 1-1-1 (L9 1-1 1 1
o 1-1-1 0 U 70 -1 1 1 0

131 1 1 1 1 (71 -1-1-1-1
c '2 0 0-1 1 r 7 2  0 0 1-1
,L 0-1 1 0 U 0 1-1 0
q'i -1 1 00 C4 1-1 0 0
CL 5 1II- - , i-I 1 1

Q -1 0 1-1 c 7) 1 0-1 1(. 3 7  1-1 1-I 1 (77 -1 1I-1 1

a 38 1 0 0 1 (178 -1 0 0-1
.39 -1--1 1 7 9  1 1 1-1
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Table III

MINIMAL POLYNOMIAL FACTORS OF x 1

(SPLITTING FIELD: GF(3 4))

i 4

Polynomial Roots: GF(3 )

*l(x) = x4 +X 3 +X 2 -X - 1 c 3 ,yU9 ,a 2 7

m 2(x) = X4+ x
3
+x

2 + 1 (,1,
6

,1 1 
AQ54

m4 (x) = X4 - - x + 1 1, (112, 3c3 GU2F

m5 (x) = X4 +  - 1 5 , 1 4 5 ,cx5

m8 (x) = x
4 + + 1 24 ,(1 72 5,6

m10 (x) =X
2 

+ x - 1 0 x , 3

rl (X) x' + x - 1 I (33, 3;'

in 1 3 (x) = - X3  
-X

2  
+ x - 1 13, 3qcc37,,

3 1

ml4(X) =x" - X3 
+ X2 + 1 1 14,42, 46, a SR

m 16 (x) = x + x 3 + x2 + x + 1 X1 6 (18 C104 ( 32

m 7(X) =X - x - 1 i 5 '173 ,(1 5

m20 (x) = x2 + 1 1420 ,t60

m2 2 (x) = X + X2 
- x + 1 22 66,138, 34

m2 3 (x) =X - X 3 -23,O 69, o7 61

m2 5 (x) =X1 - X2 
- 1 5 75, (65, 35

m2 6 (x) = x4 + x2 + x + 1 O126, 178, (74, a62

m4 0 (x) = x + 1 (140

m 4 1 (x) X4 - x3 
+ x2 

- 1 1 x 1  '43,.49,,167

m (x) = x - x3  + x + 1 44,cU52,(176, 6".

m 5 3 (x) x4 + x 3 - x 2 - x - 1 3, 79, Q 77, rt71

50 (x) x2 - x (i50, 70

m 8 0 (x) M m 0 (x) x - 1

mi (x) X - - 1 c ,  
C21, c63, (

2 9
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Some of the well-known results of number theory can be used to

enumerate the irreducible polynomials of degree d over

GF(p), which in turn allows us to enumerate the minimal

polynomials of each degree and consequently the number of required

multiplications in GF(pm). This allows us to assess the complexity

of the algorithm for a number of different cases without explicity de-

termining the structure. The numbers of required multiplications over

GF(p m ) are enumerated in Table IV for a number of different cases,

and the numbers are plotted in Figure 19 to compare the trend with

the N log 2N behavior of the FFT class of algorithms.

n
It is possible to pursue the idea of factoring x -I to devise a

further simplification that reduces the number of multiplications

over GF(p) that need to be performed. In particular, we can first

factor xni into the product of the cyclotomic polynomials Q (k)(x)

where the indices k are divisors of n. Thus, for example

x80 1 = Q(80)W Q(40)Q(20) W)Q (16) (10)
x(1=  x)Q x) (x) Q (x). . (36)

Q(x) Q(5)(W Q(4)(x Q(2)(x) Q(1)(x)

The cyclotomic polynomials for this example are listed in Table V.

In general, these polynomials have coefficients that are either

0, or + 1, up to index 105. The non-zero coefficients are typically

sparse. Each of the polynomials Q(d)(x) can be factored over GF(pm)

into the product of the minimal polynomials of the field elements of

order d, so that the cyclotomic factorization, if it precedes the second

fast algorithm described above, has the effect of reducing the

number of multiplications in GF(p) that are not multiplications by

the set {0, 1, -1 } (which are also the elements of GF(3) by
ncoincidence). The factorization of x -1 into cyclotomic polynomials

depends only on n and is otherwise independent of the field over which

the transform is being calculated. The processor structure for this

first step can therefore be field-independent. As an example of the
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TABLE IV

MULTIPLICATIVE COMPLEXITY OF DISCRETE

TRANSFORM ALGORITHM BY FAST POLYNOMIAL EVALUATION

NUMBER OF NUMBER OF

TRANSFORM EXTENSION FIELD
FIELD POINTS (N) PRODUCTS N log 2N

GF(2 ) 31 120 154

GF(2 ) 127 756 1,214

GF(2 8) 255 1,719 2,038

GF(2 11) 2047 20,461 22,517

GF(3 3) 28 50 122

GF(3 ) 80 224 505

GF(3 ) 242 962 1916

GF(3 7) 2186 13,106 24,253

GF(5 2) 24 24 110

GF(5 ) 124 247 862

GF(5 ) 3124 12,484 36.267
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TABLE V

CYCLOTOMIC FACTORS OF x 8 1

CYCLOTOMIC POLYNOMIAL IRREDUCIBLE FACTORS

Q 1(x) = X-1 mn80(x) = MOWx

Q ((X) = x+1 m 40 Wx
Q(4) W = x 2+1 m 20 Wx

Q(5) W = x 4+x 3+x2+x+1 m 15(x)

Q 8(x) =x+1 ml~)m0x
Q(10) (x) = x 4-x3 +ix2_x+1 m 8(x),m~x

Q (6W = 81m 5(x),2 X

Q(20) W =x8_ 6 +x4_ 2 +1m (x),m44 (X)

Q 0 )W = x 16 2x_ 1m 2(x),ml4(x),m 22(x),m 26(x)
Q(80) W =x32_ 24 +16_ 8 + ~ )m()mlx 7()

m 23(x) ,ml3(x) ,m4l(x) ,m53(x)

See Table 111.
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use of these polynomials, we have shown in Figure 20 a set of

dividers that can precede the structure of Figure 18. In this case,

there is only a slight decrease in the number of multiplications in

GF(3). As a second example, we show in Figure 21 the complete struc-

ture for a 24-point transform in GF(5 2 ). In this case, the number of

multiplications in GF(5) that are not multiplications by {0,l,-l]has been

reduced from 218 to 64 by incorporating the cyclotomic factorization step.

3.4 Cyclic Convolution

The successful application of CCD multi-level logic to digital

signal processing will depend, among other things, on the ability to

devise means of utilizing CCD structures that are either relatively

easy to fabricate or are minor modifications of existing devices.

Structures such as tapped delay lines and programmable transversal

filters fall into this category, but they have certainly not been

developed in anticipation of multiple-valued digital operation such

as we envision. Below we discuss an idea for utilizing the generic

binary-programmable transversal filter structure for performing

finite-field cyclic convolution. In later sections, we will expand

the idea for other applications.

Convolution is a frequently encountered signal processing

operation. The cyclic convolution of two n-point sequences with

elements belonging to GF(p) can be regarded as the product, modulo

x n-I, of two polynomials of degree n-1 having coefficients in GF(p).

It seems likely that the type of binary-programmable transversal

filter useful for PN-sequence matched filtering, developed for

correlating an analog signal against a stored binary reference, can

also be used for finite-field convolution. Just as it is possible

to perform an analog-analog correlation by A/D conversion of the

reference followed by parallel correlation in several analog-binary

devices, so is it possible to partition the finite-field operations

among a set of elementary correlators.
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If we represent the elements of GF(p) by the set

{-(p-1)/2, . ., -1, 0, +I, . . . +(p-l)/2} then we can treat the

multiplication of an element b by another element a by the elementary

process of summing b to itself a times. For cyclic convolution, we

may use such a representation to form the various products over GF(p)

in a set of tapped delay lines that apply the tap weiqhts,

0,+ 1 and accumulate the partial product in each component device

before combining their outputs. Of course the accumulated sum must

be reduced modulo p for polynomial multiplication but this can be

done separately at the output of each correlator, as well as at the

final output, in order to limit the dynamic range.

A structure that correlates a sequence over GF(5) with the

m-sequence generated by the primitive polynomial 2 +a+2 is shown

schematically in Figure 22. The m-sequence is also shown for re-

ference. In this diagram it is assumed that the zero-value of the

signal is represented by a charge value Q that is at the mid-range

of a full well. Signal charges weighted by +1 are routed to the

positive summing bus while those weighted by -1 are routed to the

negative summing bus. For a zero tap weight the signal charge is

not routed to either bus. We assume, of course, that the charge

sensing is nondestructive.

An application suggested by the apparatus of Figure 22 is a

matched filter detector for PN sequences defined over GF(p). In

such an application, the modulo p reduction is not needed as the

cross-correlation is formed in the ordinary number field. The

autocorrelation function of the m-sequence used is shown in Figure 23.

In this figure, we have also shown the cross-correlation of the

m-sequence with the reference used in the central correlator, which

is simply a hard-limited version of the m-sequence. We see that the

full correlation produces an improvement of 8 db relative to the

hard-limited version (the output of the central correlator), as well

as suppressing the positive sidelobes.
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An additional refinement to the apparatus could be made if it

is not desired to represent the zero-value of the signal by a posi-

tive charge. In that case, positive and negative signal samples could

be detected and separately correlated in sets of correlator-banks,

each bank operating only on positive signal samples and the zero-value

being represented by the bias charge (fat zero) setting the minimum

charge level for the wells. This approach would require twice as

many correlators, but the dynamic range requirements would be relaxed

somewhat.

3.5 Polynomial Division with Transversal Structures

As we have shown in Section 3.3, division by polynomials over

GF(p) is an important step in processing to calculate the discrete

transform of an input sequence defined over GF(pm). The polynomial

dividers described in that section implemented the division algorithm

A(x) = P(x) Q(x) + R(x) (37)

to divide the polynomial A(x) by the polynomial P(x). It was assumed

that A(x) was a polynomial over GF(pm) while the divider polynomial

P(x) was defined over GF(p), the division being carried out simul-

taneously by a set of m identical linear feedback shift registers.

It will suffice to consider just one of these shift registers, treating

its input as a sequence over GF(p). It is appropriate then to write

the division algorithm as

a(x) = P(x) q(x) + r(x) (38)

where all of the polynomials are defined over GF(p). The m-ary

case is carried out by m such divisions in parallel.

An inconvenience for CCD implementation of the division register

used to implement equation (38) is that charge summation is required

in certain stages determined by the divider polynomial. This has
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several drawbacks. First of all the summation must be defined

modulo p if an excessive buildup of charge along the register is

to be avoided. This complicates the structure of the shift register.

Although modulo p adders can be designed, as shown conceptually in

Section 3.2, it seems preferable to separate the adder from the

delay line. In that case, a transversal structure seems more

appropriate.

The polynomial divider that implements equation (38) may be

regarded as a digital filter whose input is the polynomial a(x) and

whose output is the quotient q(x). The feedback taps are determined

by the divisor P(x) and the remainder r(x) is left in the register

after the input a(x) has been processed. The filter can be trans-

posed into a transversal form by using signal flow-graph techniques

(reverse all paths, exchange adders and path nodes, exchange input

and output nodes). The transversal filter implements the same input-output

function as the original divider ; in other words it has the same

unit pulse response. An example of a divider-network filter and its

transposed version is shown in Figure 24. Although the two filters

have the same unit pulse response, the circuit state as represented

by the register contents differs on each cycle. For our application

of polynomial division, it is the remainder polynomial r(x) repre-

senting the final state that is of principal interest so the trans-

versal filter structure cannot be used directly.

We may, however, use the transversal filter approach to poly-

nomial division to determine the remainder in two steps; the first

step is to determine the quotient q(x) and the second step is used

to calculate

r(x) = a(x) - P(x) q(x) (39)

which is the needed result. The transposed divider circuit is

used to find the quotient which is then multiplied by the divider
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(a) DIVIDER FOR Pj-x) P k-1 k-1 
p k-2 k-2 +.. + p0

q(X) + aWx

(b TRANSPOSED DIVIDER

Figure 24. POLYNOMIAL DIVIDER AND ITS TRANSPOSED (TRANSVERSAL)

FORM
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polynomial in a second transversal filter and the product is sub-

tracted from the suitably delayed input sequence. A transversal

structure that implements division of a 24-point sequence by the

cyclotomic polynomial Q 12)(x) is shown in Figure 25 as an example

of the method. In comparison with the canonic LFSR divider, addi-

tional circuitry is required, as well as additional processing time,

but the tapped delay line transversal structure seems more convenient

to implement with available CCD techniques making the tradeoff a

reasonable one.

3.6 Galois Field Representation With m-Sequencec

A finite field processing operation that arises frequently is

multiplication of pairs of elements of GF(pm). For example, this

operation was a major concern in the development of a fast algorithm

for calculating an N-point discrete transform in GF(p ) as discussed

in Section 3.3. One method of performing the multiplication is to

use a linear sequential circuit designed over GF(p) to multiply a

data sample a R by a constant ak the feedback and feedforward connec-

tions being determined by the scale factor and the data providing

the initial loading of the shift register. The product is formed by

shifting the register once. This technique was described in

Section 3.1. Although the operations required are additions and

multiplications in the prime field GF(p) rather than in the extension

field GF(p m), it was evident that a number of adders and multipliers

are required and that the sequential circuit structure is quite

different for each scale factor.

If both the field characteristic and degree of extension are

small, then the possibility presents itself of representing the

field elements by distinct cyclic shifts of the m-sequence generated

by the primitive generator of the field. This can have dramatic

effect in reducing hardware complexity for implementing the arithmetic

operations at the expense of increased sequential processing. The
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time-expansion factor for sequential multiplication is (pm-1)/m

which practically restricts the representation to small values of

both p and m.

The transformation (h: c -) that maps the elements of GF(pm)

into cyclically shifted m-sequences is a bijective mapping that

maps the identity element into itself for both the additive and

multiplicative groups of the field, thus causing the group trans-

formations to be group isomorphisms. The practical consequences of

this algebraic statement are that multiplication of two elements

i and d is accomplished by cyclically shifting the element ( i),sj

times (or the element (&J), i - times), and that addition of Bi and

BJ is accomplished by the component-wise sum, modulo p, of their

(pm-1)-tuple representations. For addition of the elements B , as

i
in the case of the elements a , no carry operations are required.

Multiplication of a data sample ai by a constant factor ak can

be performed by circularly shifting the data in a recursive loop

N = pm - 1 times while reading out the product at a tap determined

by the multiplier a k as shown in Figure 26. In this figure, we also

show the addition of another data sample a to the product to imple-

ment the first degree function axI + x2 =a a +a . The adder

shown must be a modulo p adder, but only one of these is required

since the function is formed sequentially.

A pair of circuits of the type shown in Figure 26 could be inter-

connected to operate alternately, to performing the function of poly-

nomial evaluation. This operation is important in the computation of the

discrete transform even when a fast algorithm is employed, as dis-

cussed in Section 3.3.
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The output of the polynomial circuit of Figure 2( is in the

m-sequence representation and needs to be transformed back to the

compressed representation eventually, although further computations

can be performed in the m-sequence represented field. A number of

methods suggest themselves for the inverse transformation, but the

correlation detection approach seems most appropriate, and raises

the distinct possibility of incorporating a degree of fault tolerance

into the operation. A method of correlation detection was discussed

above in Section 3.4.

The m-sequence representation was introduced with the motive

of reducing hardware complexity while utilizing generic CCD functions

based on shift register operations and transversal structures. It

is apparent that some of the operations are relevant both to error-

coding and to spread-spectrum matched filtering. That raises the

distinct possibility that in systems which combine these signal processing

functions (such as JTIDS),it may be possible to utilize the m-sequence

representation to combine some of the processing functions or

hardware elements,or both, used for PN sequence demodulation and

Reed-Solomon decoding ; and perhaps it could be used to inject a

degree of fault tolerance into the hardware. The subject merits

further exploration as an area of application for some of the techniques

discussed above.
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